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A model of elastoplastic flow with isotropic and translational strain-hardening expressed as a variational inequality is 

constructed to obtain an integral generalization that makes it possible to study the class of discontinuous solutions. Generalized 
solutions corresponding to different types of strain-hardening are compared for the problem of the propagation of plane shear 

waves. 
Mandel [1] was the furst to examine the construction of generalized solutions in dynamic problems of the 

Prandt l -Reuss  theory of elastoplastic flow, but he mistakenly concluded that velocity and stress discontinuity fronts cannot 

be described unambiguously in this theory. A complete system of relations for strong discontinuities was obtained in [2] on 
the basis of considerations pertaining to maximum plastic energy dissipation on a front in a model of linear isotropic and 

translational strain-hardening. 
It was shown in [3] that the system of quasilinear Prandt l -Reuss equations corresponding to the e las t ic -  ideally-plastic 

model cannot be reduced to divergent form. It is thus impossible to generalize it in the form of a complete system of integral 

conservation laws and construct discontinuous solutions - -  as is possible for models of ideal media [4]. 
In the present study, we pi'opose an integral formulation that is equivalent to the initial equations of flow theory for 

an arbitrary strain-hardening curve. We then make use of this formulation to write relations for strongly discontinuous 

solutions, without resort to any additional considerations. 
1. Variational Inequali ty for  a Model of a Strain-Hardening Body. Within the framework of a geometrically linear 

approximation, the model of an elastoplastic body can be represented in the form of a system of equations of motion, Hooke's 

law, and the principle of the maximum of the rate of energy dissipation: 

1 
POi, a,14, e ~ = = e ~ e p. . = it a o u a u . , ' ( a o - a : ) e , e l  < ~ 0 ' 2 ( v , + v , )  ,J+ ,1 (1.1) 

Here, p is density; V i is the velocity vector relative to a cartesian coordinate system; aijkl is the tensor of the elastic compliance 
moduli, which is symmetric and positive-definite; e~ and ePij are the elastic and plastic components of the strain-rate tensor. 

The principle of the maximum is satisfied for an arbitrary variation of the stress tensor subject to the limitation 

f r o  - r 0) a O, (1.2) 

where f = f(aij ) is the convex positive-uniform flow function of the undeformed material; rij is the symmetric microstress 

tensor; 0 is the variable yield point. 
Inequality (1.2) describes classical strain-hardening variants: isotropic strain-hardening corresponds to rij = 0, while 

translational strain-hardening corresponds to 0 = 0 s = const. For the model of a elastic-ideally-plastic medium, rij = 0, 0 
= 0 s. In the general case, system (1.1) must be supplemented by equations describing the evolution of parameters ~'ij and 0: 

~,,, = % o,1., = % - ~,,)~. (1.3) 

The plastic strain tensor ~ij and the scalar coefficient ~ entering into these equations are assigned functions of  the strain- 

hardening parameters. Meanwhile, 
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~u = OclJ'/F)r ~ r I = OO;~/O0 

(@P = ,I,P(ry, (9) is the plastic Gibbs potential). 

System (1.1), (1.3) is equivalent to the inequality 

(~ - ~,) r - % . )  + (% - %) 

x (a,, ,y~,, ,  - v )  + (r,; - r,,)~,,,, + ((9" - o ) r l ,  >-- O, 

(1.4) 

in which the variation of the velocity vector is arbitrary, while the variations of the stress tensor and the strain-hardening 

parameters satisfy limitation (1.2). In fact, all of the relations (1.1), (1.3) can be obtained by specially choosing the allowable 
* - -  ,w (9*  variations in (1.4). In particular, (1.1) follows when aij -a i j ,  rij = rij, = (9. The system of equations describing the 

* + 3'ij, rij* = ,zij + "Yij, where "Yij is an arbitrary symmetric tensor. The last equation evolution of zij follows when aij ~ aij 8" 
of (1.3) is obtained when aij* = rij = = 0 and aij = 2aij, rij* = 2rij, (9" = 2(9. On the other hand, by assuming in (1.1) 

that 

- -  . . 0 

cr V (or - r j) e* r~j, 

and allowing for (1.3), we derive (1.4). 
Inequality (1.4), represeriting one of the equivalent formulations of flow theory, is a special case of  a hyperbolic 

variational inequality with a nonlinear operator: 

( u ' -  u ) ( N ( u ) -  g) >--0 u,u* E K ,  
" (1.5) 

N ( u ) = O ( p / O t -  ~ 0 % / O x .  

Here, u = u(t, x) is an unknown m-dimensional vector function; K = K(t, x) is the convex set of allowable variations of the 

solution; ~ = 0@/0u, ~s = (9~I's/0U, @ = @(t, x, u) and 'Is s = ~I's(t, x, u) are assigned scalar potentials; g = g(t, x, u) is an 
assigned vector function. The symbols a/at and a/0x s denote total derivatives with respect to the corresponding variables. We 
assume below that ~ and ~b s are continuously differentiable and that K and g are continuous functions of  their arguments. 

In the model being considered, u contains components of the velocity vector, stress tensor, and strain-hardening 

parameters 

1 l 
�9 = ~ + ~.pq~ + ~ %j,jo,,, W = %q, 

The vector g is equal to zero, while the set K is determined by limitation (1.2). 

In the case when the function ,I, is strictly convex and g satisfies the Lipshitz condition with respect to the variable u, 
arbitrary estimates that generalize estimates of  the solutions of  quasilinear hyperbolic systems of equations in characteristic 
conoids are valid for inequality (1.5). These estimates prove that the "short-term" solutions of  the Cauchy problem 

u [ , .  0 = u0(x)  

are unique and independent of the initial data, as are the solutions of mixed problems with dissipative boundary conditions. 

The estimates also prove that the region in which the solutions are obtained is finite (i.e. they prove that the rate of  propagation 
of perturbations in the corresponding models is finite - -  see [5]). 

2. Relations for  a Strongly Discontinuous Solution. In the general case, a variational equality can be written in 
divergent form 
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u * N ( u )  - ( u ' - u ) g > 1 0 ( u ~ o - * ) / 0 t  

2 - X 0(utPs - qJ)/O.~ + h, h(t, x, u) = qb., - qs., 
s = l  s ~ l  

and thus has an integral generalization that is equivalent to it for smooth solutions: 

n 

f f  +   ,Czu" L - (u"  - u)zgId odt 
G s ~ l  

f f  (- (u o - a , ) z . ,  + ( u , ,  - + h}do xdt. 
G 

(2.1) 

Here, x E C~*(G) is an arbitrary non-negative function that is finite in the region G; u* = u*(t, x) E K is a continuously 

differentiable vector function. 
The integral inequality naturally determines the class of generalized solutions that contains all of the vector functions 

u E LI(G) satisfying (2.1) for all allowable u*. In particular, this class contains solutions with a strong discontinuity, as well 

as solutions that have a first-order discontinuity on a certain hypersurface S and are continuously differentiable in the rest of 

G. 
By applying Green's formula to integrals taken over the continuous subregions of such a solution and by allowing for 

the arbitrariness of X, we can show that the following inequality is valid at points of the hypersurface S 

u*[rl p cIuqo - * ]  + X [utp, - qJs]vs, r = cqo + ~py,, 
s ~ l  s = l  

where c _> 0 is the velocity of the front of the discontinuity - -  which is the section S of the hyperplane t = const - -  in the 

direction of its normal Vs; the brackets denote the discontinuity of the function. 

The last inequality is rewritten in the equivalent form 
n 

( u *  - u ~ [rl ~> d -= c(~o~ I - le~l) + ~ ( ~p~ - [U;,l)v," (2.2) 
S = l  

Here, u 0 = (u + + u - ) / 2  (u + are unilateral limits of the solution on S). The quantities ~o and ~~ s are similarly determined. 

Assuming in (2) that u* = u 0 E K, we can obtain the condition for realization of the discontinuity (d <_ 0). This condition 

plays the same role for inequality (1.5) as does the condition of non-negativity of the entropy discontinuity in models of ideal 

media. 
By expanding the discontinuities [@] and [,I'] s into Taylor series, we can easily show that d/[u] 2 --- 0 as [u] --, 0, i.e. 

d is of third-order smallness compared to [u]. 

We will henceforth focus on two types of  solutions with a strong discontinuity: regular solutions, for which the left 

side of  inequality (2.2) is non-negative at points of  S for all u* E K; irregular solutions, for which there exists a vector u '  

E K such that (u'  - u '  - u~ < 0 at a certain point S. 

We have the following theorem: on the front of  discontinuity of the regular solution for all X( I X ] < 1/2, in this case 

uX = 0, + l /2)u + + ( 1 / 2 -  ~ )u -  E K )  

(u* - u ~) [r l  >~ 0. (2.3) 

In fact, by virtue of  the definition of a regular solution, inequality (2.3) is satisfied when ~ = 0. First taking the vector u + 

and then u -  as u* in (2.3) and summing the resulting inequalities, we can establish that [u][r] = 0. It follows from this, with 

allowance for the formula u x = u ~ + X[u], that inequality (2.3) is valid for any ~,. 

From a geometric viewpoint, the above theorem means that if any point u x of a segment in an m-dimensional state with 

the ends u +, u -  lies completely within the set K, then It] = 0 by virtue of the arbitrariness of  the variation u* - u x in (2.3). 

If the entire segment is on the boundary of K, then the vector It] will be directed along its inner normal for all points of the 

segment. 
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Thus, regular solutions in the theory of elastoplastic flow can contain two types of discontinuities: elastic waves, 

determined by the system of equations [r] = 0; plastic waves, corresponding to the condition of orthogonality with respect to 

the yield surface. It should be noted that the functions ,I, and 'I ' s will be quadratic (d = 0) in the case of an elastoplastic 

medium, so that any discontinuous solution will be regular. The complete system of strong discontinuity relations that follows 

from (2.3) for the elastic-ideally-plastic model were obtained in [6, 7] by the same method examined here. 

3. Propagation of  Shear Stress Waves. Generalized solutions with a strong discontinuity can be constructed in closed 

form in the unidimensional problem of propagation of plane shear waves generated by the application of a shear stress ~13 = 

q to the surface of a half-space x 1 >_ 0. In this problem, variational inequality (2.3) and the limitation on the variation take 

the form 

* - - [crlsl + 2(r13 - ~3) [r 

(3.1) 
+ (0" - # )  lr/l >-- 0, cr13 - r,3 ~ 0* 

(G is the shear modulus). 
After analyzing the system of equations obtained when the rule for Lagrangian multipliers (the Kuhn--Tucker theorem) 

is applied to inequality (1.4) 

1 
PU3., = O't3 i '  G crt3., - -  (23 1 "{- ?].t ~- 0 ,  2~13, t : / ] t  >/ 0 ,  (3.2) 

we fred that the strain-hardening parameters 7"13 and 0 are dependent on one another in the case of pure shear. The are 

connected by the equality ~/ = 2~13. This equation, together with the stress-strain curve of the material (2~13 + al3/G = 

F(al3 ), makes it possible to determine the plastic potential 

t 13 § !) 

= f 2r + ?']dO = f {F(o') - cr/S)d~. 
0 

With a constant value q > 0, the regular generalized solution of the problem contains two lines of discontinuity in the 

plane of  the variables t,  x1: the elastic precursor x 1 = Cst, propagating with the velocity of the transverse waves c s = x/G/p; 

the plastic wave x 1 = crt. In the region between the discontinuities, o13 = 0 s. Behind the front of  the plastic wave, a13 = q. 

With allowance for the Lagrangian multiplier rule, the velocity of the plastic wave can be found from variational inequality 

(3.1) in the form 

t 
c = F(q) F(Os)] 

The condition under which the plastic discontinuity can be realized leads to the inequality 

q 
. f  adF(ct) <~ {F(q) - F(O)}(q + 0 ) /2 ,  
o, 

which has a simple geometric interpretation and is satisfied automatically for stress-strain curves that are convex-downward. 

In the case of curves that are convex-upward, system (3.2) has a self-similar solution that depends on the variable c = Xl/t and 

has one line of discontinuity: x 1 = est. In the neighborhood of  a centered wave, this solution is determined by the usual 

equation (see [8], for example) 

pc2dF/da,3 = 1. 

The curve that describes pure shear for a wide range of elastoplastic materials has a convex-downward section 

corresponding to the yield point plateau and a convex upward section corresponding to active strain-hardening. The condition 

under which such a curve is obtained prohibits the formation of  two plastic discontinuities propagating at the same or different 

(Fig. 1) velocities. Given a sufficiently large value of the external stress q, the line of plastic discontinuity corresponds to the 

point 0 c at which a ray originating from the point corresponding to the limiting equilibrium state touches the stress-strain 
Curve. 
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Fig. 1 Fig. 2 

The value of c~ is calculated from the same formula after q is replaced by 0 c. At q > 0 c, the plastic discontinuity adjoins a 

self-similar solution dependent on c = Xl/t (Fig. 2). 
Thus, the regular discontinuous solution describing the propagation of shear loading waves is determined completely 

by the form of the function F and is independent of the type of strain-hardening. 

4. Steady Stability of  Shear  Waves. Together with the regular solutions to the problem of the propagation of shear 

stress waves, there may also be a set of irregular discontinuous solutions. These solutions can be obtained after replacing the 

equality a13 - 7"13 = 0 behind the front of the plastic discontinuity by a strict inequality. Such a substitution violates variational 

inequality (3.1) for certain variations of the shear stress and the strain-hardening parameters. The problem of choosing a natural 
discontinuous solution can be solved by the viscosity method [9]. 

Let us examine the system of equations describing the propagation of viscoelastic-viscoplastic shear waves in a strain- 
hardening medium: 

1 
pv�9 = cr13.: +/~v3.11, ~,, aL3.,-  % + q,  = O, 

2~13. ' = q., = max{0, crl3 - r13--0}/tt e. 
(4.1) 

Here, P-0 and/zp are the Kelv in-Voigt  and Shvedov-Bingham viscosity coefficients. System (4.1) changes into (3.2) as/z 0 

and/zp approach zero, so it is natural to require that the generalized solutions of  the elastoplastic model be stable in the sense 
of allowing passage to the limit for the viscosity parameters in the sequence of solutions of  system (4.1). 

Since the strain-ha~:dening parameters are again dependent variables for a viscoelastic-viscoplastic model, then 7"13 
+ 0 = H01). Here, the function H(~) can be found from the curve for pure shear as the solution of the equation ~ + H/G = 
F(H). Differentiation of this equation twice leads to the equation 

With allowance for the inequality 1/G < dF/dtr13, it follows from this equation that the convexity of  H0I) is unambiguously 
connected with the convexity of the strain-hardening diagram. 

In the steady-state case, system (4.1) leads to two ordinary differential equations of the form 

/%cdcrl~_/dY = P f c r l 3 ,  ~l), /%cdq/dy = Q~cr~3, ~1), (4.2) 

where y = ct - x~; Q(%,  r/) =/zoma,{O , % - H(r/)}//~p; 

P ( o ' i 3 ,  rl)/G = - ( l  - pc2/G) tSyl3 - ( ' )  + pt'2~ - -  Q ( o ' 1 3  , n )  

(C is an arbitrary constant of  integration). It can be proven that if the functions trl3(y ) and ~/(y) form the solution of system 

(4.2), then the functions ~r13(Y/e ) and ~7(y/e) are the solution of the analogous system of equations with the viscosity parameters 
/x0 e and/~pe. Thus, passing to the limit for/z 0 --, 0 (Fp//~0 = const) is equivalent to e --, 0 or I Y I --" oo, and the study of 
solutions that are steady and stable in terms of viscosity reduces to the analysis of the integral curves of  system (4.2) 
corresponding to solutions with an infinite domain - oo < y < oo. 

In accordance with the qualitative theory of differential equations [10], any unclosed integral curve of system (4.2) 
corresponding to a solution with an infinite range joins the singular points of the system 
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Fig. 3 
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j ' (o~, ,  ,i-') = 0~o?,,  ,1-') = o. 

In the plane of the variables o'13, 77, these points correspond to points on the straight line o13 = X~'/ + C ,  • = pc2G/(G - -  pc2), 

located below the graph of the function a13 = H07) (Fig. 3). 
The given system is linear at a13  < H. Its integral curves are segments of straight lines parallel to the axis a13. At 

o.13 -> H, the matrix of the Jacobian of the system is equal to 

/:M_:, "/Jl ,('p'c2 - (7) "/r - C; G'(/t DC2/ / t .  + d / f ,  d~])~ 

J " 1 - d H / d r  I " 

The eigenvalues of this matrix 

= -  a -  ,,~'~ * " J C + " ~ L "  .,_ "~ 2 " i ' 2  L ' " 1 , , , j )  - G - P c 2 - , T  G+ I I + 4 G ; , ,  
�9 , , , p 

are always real-valued. The end points of the singular lines of system (4.2) are simple singular points when the condition of 

non-degeneracy dH/d~ ~ x is satisfied. If dH/d~ < x, then Xlk 2 < 0, i.e. the corresponding point is a saddle point (points 
1 and 3 in Fig. 3). If  dH/d~7 > x (XIX 2 > 0), then the point is a stable node (point 2). 

An analysis of the direction field makes it possible to construct an approximate representation of the integral curves 

in the neighborhood of each type of singular point (Figs. 4 and 5). 

Using a standard approach [9, pp. 238-239], we can prove that there is a single integral curve that originates from point 1 as 
the separatrix of a saddle point and reaches node 2. It can also be proven that there are no integral curves corresponding to 

any other singular points. Thus, the unique steady-state solution obtained with f'Lxed c and C corresponds to state 1 "ahead of 
the front" and state 2 "behind the front" of the plastic discontinuity. This solution is realized only when the curve for pure shear 

has a convex downward section and is characterized by the relations 

• ~__ [at31 = • crt3 H(r/• �9 

The relations obtained here show that the class of stable, steady solutions coincides with the class of regular plastic 
waves of  strong discontinuity. Thus, irregular solutions describing the propagation of shear stress waves in an elastoplastic half- 
space do not satisfy the criterion of stationariness of plastic discontinuities. 
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